JVRGPLD

personalfactory:

Arup Develops 3D Printing Technique for Structural Steel ~ archdaily.com

A team lead by Arup has developed a method of designing and 3D Printing steel joints which will significantly reduce the time and cost needed to make complex nodes in tensile structures. Their research is being touted as “a whole new direction for the use of additive manufacturing” which provides a way of taking 3D printing “firmly into the realm of real-world, hard hat construction.”

personalfactory:

Arup Develops 3D Printing Technique for Structural Steel ~ archdaily.com

A team lead by Arup has developed a method of designing and 3D Printing steel joints which will significantly reduce the time and cost needed to make complex nodes in tensile structures. Their research is being touted as “a whole new direction for the use of additive manufacturing” which provides a way of taking 3D printing “firmly into the realm of real-world, hard hat construction.”

personalfactory:

Arup Develops 3D Printing Technique for Structural Steel ~ archdaily.com

A team lead by Arup has developed a method of designing and 3D Printing steel joints which will significantly reduce the time and cost needed to make complex nodes in tensile structures. Their research is being touted as “a whole new direction for the use of additive manufacturing” which provides a way of taking 3D printing “firmly into the realm of real-world, hard hat construction.”

personalfactory:

Arup Develops 3D Printing Technique for Structural Steel ~ archdaily.com

A team lead by Arup has developed a method of designing and 3D Printing steel joints which will significantly reduce the time and cost needed to make complex nodes in tensile structures. Their research is being touted as “a whole new direction for the use of additive manufacturing” which provides a way of taking 3D printing “firmly into the realm of real-world, hard hat construction.”

personalfactory:

Arup Develops 3D Printing Technique for Structural Steel ~ archdaily.com

A team lead by Arup has developed a method of designing and 3D Printing  joints which will significantly reduce the time and cost needed to make complex nodes in tensile structures. Their research is being touted as “a whole new direction for the use of additive manufacturing” which provides a way of taking “firmly into the realm of real-world, hard hat construction.”